Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Biomacromolecules ; 24(7): 3115-3126, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: covidwho-20244921

RESUMO

In this work, we developed a library of sulfated glycomimetic polypeptides with a high sulfated degree (up to 99%) via a click reaction and sulfation modification, enabling control over the helicity, molecular weight, rigidity, and side-chain structure. Their potentials as the inhibitors of SARS-CoV-2 and common enterovirus were investigated, and the structure-activity relationship was explored in detail. The in vitro results revealed the crucial role of α-helical conformation and sulfated sugar since all the sulfated glycopolypeptides exhibited outperformed activity in suppressing SARS-CoV-2 infection with the inhibition efficiency up to 85%. Other structural properties, including the rigid chain structure and a moderate molecular weight, also contributed to blocking the viral entry into host cells. Among the sulfated glycopolypeptides, L60-SG-POB showed the highest inhibition efficiency with an IC50 of 0.71 µg/mL. Furthermore, these optimized sulfated glycopolypeptides were also capable of preventing enterovirus infection with the inhibition efficiency of up to 86%. This work opens new avenues for the development of synthetic polypeptides bearing sulfated sugars against SARS-CoV-2 and other viruses.


Assuntos
Antivirais , COVID-19 , Humanos , Antivirais/farmacologia , SARS-CoV-2 , Sulfatos/química , Peptídeos/farmacologia , Peptídeos/química
2.
ACS Appl Mater Interfaces ; 15(22): 26340-26348, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: covidwho-20241598

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection relies on its spike protein binding to angiotensin-converting enzyme 2 (ACE2) on host cells to initiate cellular entry. Blocking the interactions between the spike protein and ACE2 offers promising therapeutic opportunities to prevent infection. We report here on peptide amphiphile supramolecular nanofibers that display a sequence from ACE2 in order to promote interactions with the SARS-CoV-2 spike receptor binding domain. We demonstrate that displaying this sequence on the surface of supramolecular assemblies preserves its α-helical conformation and blocks the entry of a pseudovirus and its two variants into human host cells. We also found that the chemical stability of the bioactive structures was enhanced in the supramolecular environment relative to the unassembled peptide molecules. These findings reveal unique advantages of supramolecular peptide therapies to prevent viral infections and more broadly for other targets as well.


Assuntos
COVID-19 , Nanofibras , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica , Peptídeos/farmacologia , Peptídeos/metabolismo
3.
Viruses ; 15(5)2023 05 14.
Artigo em Inglês | MEDLINE | ID: covidwho-20232730

RESUMO

Chikungunya virus (CHIKV) and Zika virus (ZIKV) are important disease-causing agents worldwide. Currently, there are no antiviral drugs or vaccines approved to treat these viruses. However, peptides have shown great potential for new drug development. A recent study described (p-BthTX-I)2K [(KKYRYHLKPF)2K], a peptide derived from the Bothropstoxin-I toxin in the venom of the Bothrops jararacussu snake, showed antiviral activity against SARS-CoV-2. In this study, we assessed the activity of this peptide against CHIKV and ZIKV and its antiviral action in the different stages of the viral replication cycle in vitro. We observed that (p-BthTX-I)2K impaired CHIKV infection by interfering with the early steps of the viral replication cycle, reducing CHIKV entry into BHK-21 cells specifically by reducing both the attachment and internalization steps. (p-BthTX-I)2K also inhibited the ZIKV replicative cycle in Vero cells. The peptide protected the cells against ZIKV infection and decreased the levels of the viral RNA and the NS3 protein of this virus at viral post-entry steps. In conclusion, this study highlights the potential of the (p-BthTX-I)2K peptide to be a novel broad-spectrum antiviral candidate that targets different steps of the replication cycle of both CHIKV and ZIKV.


Assuntos
COVID-19 , Febre de Chikungunya , Vírus Chikungunya , Vírus , Infecção por Zika virus , Zika virus , Animais , Chlorocebus aethiops , Humanos , Infecção por Zika virus/tratamento farmacológico , Zika virus/genética , Células Vero , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral , SARS-CoV-2 , Vírus Chikungunya/genética , Peptídeos/farmacologia , Peptídeos/uso terapêutico
4.
J Enzyme Inhib Med Chem ; 38(1): 2212327, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-2323671

RESUMO

Both receptor-binding domain in spike protein (S-RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human neuropilin-1 (NRP1) are important in the virus entry, and their concomitant inhibition may become a potential strategy against the SARS-CoV-2 infection. Herein, five novel dual S-RBD/NRP1-targeting peptides with nanomolar binding affinities were identified by structure-based virtual screening. Particularly, RN-4 was found to be the most promising peptide targeting S-RBD (Kd = 7.4 ± 0.5 nM) and NRP1-BD (the b1 domain of NRP1) (Kd = 16.1 ± 1.1 nM) proteins. Further evidence in the pseudovirus infection assay showed that RN-4 can significantly inhibit the SARS-CoV-2 pseudovirus entry into 293 T cells (EC50 = 0.39 ± 0.09 µM) without detectable side effects. These results suggest that RN-4, a novel dual S-RBD/NRP1-targeting agent, holds potential as an effective therapeutic to combat the SARS-CoV-2 infection.


Assuntos
COVID-19 , Simulação de Dinâmica Molecular , Humanos , SARS-CoV-2 , Neuropilina-1 , Peptídeos/farmacologia , Ligação Proteica
5.
Front Immunol ; 14: 1162739, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2314172

RESUMO

Cytokines are secretion proteins that mediate and regulate immunity and inflammation. They are crucial in the progress of acute inflammatory diseases and autoimmunity. In fact, the inhibition of proinflammatory cytokines has been widely tested in the treatment of rheumatoid arthritis (RA). Some of these inhibitors have been used in the treatment of COVID-19 patients to improve survival rates. However, controlling the extent of inflammation with cytokine inhibitors is still a challenge because these molecules are redundant and pleiotropic. Here we review a novel therapeutic approach based on the use of the HSP60-derived Altered Peptide Ligand (APL) designed for RA and repositioned for the treatment of COVID-19 patients with hyperinflammation. HSP60 is a molecular chaperone found in all cells. It is involved in a wide diversity of cellular events including protein folding and trafficking. HSP60 concentration increases during cellular stress, for example inflammation. This protein has a dual role in immunity. Some HSP60-derived soluble epitopes induce inflammation, while others are immunoregulatory. Our HSP60-derived APL decreases the concentration of cytokines and induces the increase of FOXP3+ regulatory T cells (Treg) in various experimental systems. Furthermore, it decreases several cytokines and soluble mediators that are raised in RA, as well as decreases the excessive inflammatory response induced by SARS-CoV-2. This approach can be extended to other inflammatory diseases.


Assuntos
Artrite Reumatoide , Chaperonina 60 , Humanos , COVID-19 , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , SARS-CoV-2/metabolismo , Chaperonina 60/farmacologia , Chaperonina 60/uso terapêutico
6.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: covidwho-2312704

RESUMO

The binding properties of synthetic and recombinant peptides derived from N-terminal part of ACE2, the main receptor for SARS-CoV-2, were evaluated. Additionally, the ability of these peptides to prevent virus entry in vitro was addressed using both pseudovirus particles decorated with the S protein, as well as through infection of Vero cells with live SARS-CoV-2 virus. Surprisingly, in spite of effective binding to S protein, all linear peptides of various lengths failed to neutralize the viral infection in vitro. However, the P1st peptide that was chemically "stapled" in order to stabilize its alpha-helical structure was able to interfere with virus entry into ACE2-expressing cells. Interestingly, this peptide also neutralized pseudovirus particles decorated with S protein derived from the Omicron BA.1 virus, in spite of variations in key amino acid residues contacting ACE2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Chlorocebus aethiops , Humanos , SARS-CoV-2/metabolismo , Células Vero , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica , Peptídeos/farmacologia , Peptídeos/metabolismo
7.
Anal Chem ; 95(15): 6198-6202, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: covidwho-2301168

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the continuing emergence of infectious variants have caused a serious pandemic and a global economic slump since 2019. To overcome the situation and prepare for future pandemic-prone diseases, there is a need to establish a convenient diagnostic test that is quickly adaptable to unexpected emergence of virus variants. Here we report a fluorescent peptide sensor 26-Dan and its application to the fluorescence polarization (FP) assay for the highly sensitive and convenient detection of SARS-CoV-2. The 26-Dan sensor was developed by fluorescent labeling of the 26th amino acid of a peptide derived from the N-terminal α-helix of human angiotensin-converting enzyme 2 (hACE2) receptor. The 26-Dan sensor maintained the α-helical structure and showed FP changes in a concentration-dependent manner of the receptor binding domain (RBD) of the virus. The half maximal effective concentrations (EC50's) for RBD of Wuhan-Hu-1 strain, Delta (B.1.617.2), and Omicron (BA.5) variants were 51, 5.2, and 2.2 nM, respectively, demonstrating that the 26-Dan-based FP assay can be adaptable to virus variants that evade standard diagnostic tests. The 26-Dan-based FP assay could also be applied to model screening of a small molecule that inhibits RBD binding to hACE2 and identified glycyrrhizin as a potential inhibitor. The combination of the sensor with a portable microfluidic fluorescence polarization analyzer allowed for the detection of RBD in a femtomolar range within 3 min, demonstrating the assay could be a promising step toward a rapid and convenient test for SARS-CoV-2 and other possible future pandemic-prone diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/química , COVID-19/diagnóstico , Ligação Proteica , Peptídeos/farmacologia
8.
ACS Nano ; 17(9): 8598-8612, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: covidwho-2300108

RESUMO

Biomimetic cubic phases can be used for protein encapsulation in a variety of applications such as biosensors and drug delivery. Cubic phases with a high concentration of cholesterol and phospholipids were obtained herein. It is shown that the cubic phase structure can be maintained with a higher concentration of biomimetic membrane additives than has been reported previously. Opposing effects on the curvature of the membrane were observed upon the addition of phospholipids and cholesterol. Furthermore, the coronavirus fusion peptide significantly increased the negative curvature of the biomimetic membrane with cholesterol. We show that the viral fusion peptide can undergo structural changes leading to the formation of hydrophobic α-helices that insert into the lipid bilayer. This is of high importance, as a fusion peptide that induces increased negative curvature as shown by the formation of inverse hexagonal phases allows for greater contact area between two membranes, which is required for viral fusion to occur. The cytotoxicity assay showed that the toxicity toward HeLa cells was dramatically decreased when the cholesterol or peptide level in the nanoparticles increased. This suggests that the addition of cholesterol can improve the biocompatibility of the cubic phase nanoparticles, making them safer for use in biomedical applications. As the results, this work improves the potential for the biomedical end-use applications of the nonlamellar lipid nanoparticles and shows the need of systematic formulation studies due to the complex interplay of all components.


Assuntos
Coronavirus , Humanos , Biomimética , Células HeLa , Peptídeos/farmacologia , Peptídeos/química , Fosfolipídeos/química , Bicamadas Lipídicas/química , Colesterol
9.
Viruses ; 15(4)2023 03 23.
Artigo em Inglês | MEDLINE | ID: covidwho-2299021

RESUMO

Viruses with rapid replication and easy mutation can become resistant to antiviral drug treatment. With novel viral infections emerging, such as the recent COVID-19 pandemic, novel antiviral therapies are urgently needed. Antiviral proteins, such as interferon, have been used for treating chronic hepatitis C infections for decades. Natural-origin antimicrobial peptides, such as defensins, have also been identified as possessing antiviral activities, including direct antiviral effects and the ability to induce indirect immune responses to viruses. To promote the development of antiviral drugs, we constructed a data repository of antiviral peptides and proteins (DRAVP). The database provides general information, antiviral activity, structure information, physicochemical information, and literature information for peptides and proteins. Because most of the proteins and peptides lack experimentally determined structures, AlphaFold was used to predict each antiviral peptide's structure. A free website for users (http://dravp.cpu-bioinfor.org/, accessed on 30 August 2022) was constructed to facilitate data retrieval and sequence analysis. Additionally, all the data can be accessed from the web interface. The DRAVP database aims to be a useful resource for developing antiviral drugs.


Assuntos
COVID-19 , Vírus , Humanos , Antivirais/farmacologia , Pandemias , Peptídeos/farmacologia , Vírus/genética , Bases de Dados de Proteínas
10.
Proc Natl Acad Sci U S A ; 120(13): e2300360120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: covidwho-2287540

RESUMO

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) introduced a relatively large number of mutations, including three mutations in the highly conserved heptad repeat 1 (HR1) region of the spike glycoprotein (S) critical for its membrane fusion activity. We show that one of these mutations, N969K induces a substantial displacement in the structure of the heptad repeat 2 (HR2) backbone in the HR1HR2 postfusion bundle. Due to this mutation, fusion-entry peptide inhibitors based on the Wuhan strain sequence are less efficacious. Here, we report an Omicron-specific peptide inhibitor designed based on the structure of the Omicron HR1HR2 postfusion bundle. Specifically, we inserted an additional residue in HR2 near the Omicron HR1 K969 residue to better accommodate the N969K mutation and relieve the distortion in the structure of the HR1HR2 postfusion bundle it introduced. The designed inhibitor recovers the loss of inhibition activity of the original longHR2_42 peptide with the Wuhan strain sequence against the Omicron variant in both a cell-cell fusion assay and a vesicular stomatitis virus (VSV)-SARS-CoV-2 chimera infection assay, suggesting that a similar approach could be used to combat future variants. From a mechanistic perspective, our work suggests the interactions in the extended region of HR2 may mediate the initial landing of HR2 onto HR1 during the transition of the S protein from the prehairpin intermediate to the postfusion state.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Estrutura Secundária de Proteína , Glicoproteína da Espícula de Coronavírus/metabolismo , Peptídeos/genética , Peptídeos/farmacologia , Peptídeos/química , Antirretrovirais
11.
Viruses ; 15(2)2023 01 28.
Artigo em Inglês | MEDLINE | ID: covidwho-2287279

RESUMO

Due to the rapid mutation of porcine epidemic diarrhea virus (PEDV), existing vaccines cannot provide sufficient immune protection for pigs. Therefore, it is urgent to design the affinity peptides for the prevention and control of this disease. In this study, we made use of a molecular docking technology for virtual screening of affinity peptides that specifically recognized the PEDV S1 C-terminal domain (CTD) protein for the first time. Experimentally, the affinity, cross-reactivity and sensitivity of the peptides were identified by an enzyme-linked immunosorbent assay (ELISA) and a surface plasmon resonance (SPR) test, separately. Subsequently, Cell Counting Kit-8 (CCK-8), quantitative real-time PCR (qRT-PCR), Western blot and indirect immunofluorescence were used to further study the antiviral effect of different concentrations of peptide 110766 in PEDV. Our results showed that the P/N value of peptide 110766 at 450 nm reached 167, with a KD value of 216 nM. The cytotoxic test indicated that peptide 110766 was not toxic to vero cells. Results of the absolute quantitative PCR revealed that different concentrations (3.125 µM, 6.25 µM, 12.5 µM, 25 µM, 50 µM, 100 µM, 200 µM) of peptide 110766 could significantly reduce the viral load of PEDV compared with the virus group (p < 0.0001). Similarly, results of Western blot and indirect immunofluorescence also suggested that the antiviral effect of peptide 110766 at 3.125 is still significant. Based on the above research, high-affinity peptide 110766 binding to the PEDV S1-CTD protein was attained by a molecular docking technology. Therefore, designing, screening, and identifying affinity peptides can provide a new method for the development of antiviral drugs for PEDV.


Assuntos
Vírus da Diarreia Epidêmica Suína , Chlorocebus aethiops , Animais , Suínos , Glicoproteína da Espícula de Coronavírus/genética , Simulação de Acoplamento Molecular , Células Vero , Peptídeos/farmacologia , Antivirais/farmacologia , Reação em Cadeia da Polimerase em Tempo Real
12.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: covidwho-2263287

RESUMO

Medicago truncatula in symbiosis with its rhizobial bacterium partner produces more than 700 nodule-specific cysteine-rich (NCR) peptides with diverse physicochemical properties. Most of the cationic NCR peptides have antimicrobial activity and the potential to tackle antimicrobial resistance with their novel modes of action. This work focuses on the antibacterial activity of the NCR169 peptide derivatives as we previously demonstrated that the C-terminal sequence of NCR169 (NCR169C17-38) has antifungal activity, affecting the viability, morphology, and biofilm formation of various Candida species. Here, we show that NCR169C17-38 and its various substituted derivatives are also able to kill ESKAPE pathogens such as Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli. The replacement of the two cysteines with serines enhanced the antimicrobial activity against most of the tested bacteria, indicating that the formation of a disulfide bridge is not required. As tryptophan can play role in the interaction with bacterial membranes and thus in antibacterial activity, we replaced the tryptophans in the NCR169C17-38C12,17/S sequence with various modified tryptophans, namely 5-methyl tryptophan, 5-fluoro tryptophan, 6-fluoro tryptophan, 7-aza tryptophan, and 5-methoxy tryptophan, in the synthesis of NCR169C17-38C12,17/S analogs. The results demonstrate that the presence of modified fluorotryptophans can significantly enhance the antimicrobial activity without notable hemolytic effect, and this finding could be beneficial for the further development of new AMPs from the members of the NCR peptide family.


Assuntos
Antibacterianos , Triptofano , Triptofano/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos/farmacologia , Bactérias , Staphylococcus aureus , Testes de Sensibilidade Microbiana
13.
Chem Commun (Camb) ; 59(7): 868-871, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: covidwho-2268710

RESUMO

Macrocycles often exhibit good biological properties and potential druggability, which lead to versatile applications in the pharmaceutical industry. Herein, we report a highly efficient and practical methodology for the functionalization and macrocyclization of Trp and Trp-containing peptides via Pd(II)-catalyzed C-H alkenylation at the Trp C4 position. This method provides direct access to C4 maleimide-decorated Trp-containing peptidomimetics and maleimide-braced 17- to 30-membered peptide macrocycles. In particular, these unique macrocycles revealed low micro- to sub-micromolar EC50 values with promising anti-SARS-CoV-2 activities. Further explorations with computational methodologies and experimental validations indicated that these macrocycles exert antiviral effects through binding with the N protein of SARS-CoV-2.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Peptídeos/farmacologia , Peptídeos/química , Ciclização , Maleimidas
14.
Int J Mol Sci ; 24(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: covidwho-2278127

RESUMO

Neurotropic viruses severely damage the central nervous system (CNS) and human health. Common neurotropic viruses include rabies virus (RABV), Zika virus, and poliovirus. When treating neurotropic virus infection, obstruction of the blood-brain barrier (BBB) reduces the efficiency of drug delivery to the CNS. An efficient intracerebral delivery system can significantly increase intracerebral delivery efficiency and facilitate antiviral therapy. In this study, a rabies virus glycopeptide (RVG) functionalized mesoporous silica nanoparticle (MSN) packaging favipiravir (T-705) was developed to generate T-705@MSN-RVG. It was further evaluated for drug delivery and antiviral treatment in a VSV-infected mouse model. The RVG, a polypeptide consisting of 29 amino acids, was conjugated on the nanoparticle to enhance CNS delivery. The T-705@MSN-RVG caused a significant decrease in virus titers and virus proliferation without inducing substantial cell damage in vitro. By releasing T-705, the nanoparticle promoted viral inhibition in the brain during infection. At 21 days post-infection (dpi), a significantly enhanced survival ratio (77%) was observed in the group inoculated with nanoparticle compared with the non-treated group (23%). The viral RNA levels were also decreased in the therapy group at 4 and 6 dpi compared with that of the control group. The T-705@MSN-RVG could be considered a promising system for CNS delivery for treating neurotropic virus infection.


Assuntos
Nanopartículas , Vírus da Raiva , Viroses , Infecção por Zika virus , Zika virus , Humanos , Animais , Camundongos , Vírus da Raiva/fisiologia , Glicopeptídeos , Peptídeos/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico
15.
Microb Biotechnol ; 16(4): 757-777, 2023 04.
Artigo em Inglês | MEDLINE | ID: covidwho-2255258

RESUMO

Antimicrobial peptides play a crucial role in innate immunity, whose components are mainly peptide-based molecules with antibacterial properties. Indeed, the exploration of the immune system over the past 40 years has revealed a number of natural peptides playing a pivotal role in the defence mechanisms of vertebrates and invertebrates, including amphibians, insects, and mammalians. This review provides a discussion regarding the antibacterial mechanisms of peptide-based agents and their structure-activity relationships (SARs) with the aim of describing a topic that is not yet fully explored. Some growing evidence suggests that innate immunity should be strongly considered for the development of novel antibiotic peptide-based libraries. Also, due to the constantly rising concern of antibiotic resistance, the development of new antibiotic drugs is becoming a priority of global importance. Hence, the study and the understanding of defence phenomena occurring in the immune system may inspire the development of novel antibiotic compound libraries and set the stage to overcome drug-resistant pathogens. Here, we provide an overview of the importance of peptide-based antibacterial sources, focusing on accurately selected molecular structures, their SARs including recently introduced modifications, their latest biotechnology applications, and their potential against multi-drug resistant pathogens. Last, we provide cues to describe how antibacterial peptides show a better scope of action selectivity than several anti-infective agents, which are characterized by non-selective activities and non-targeted actions toward pathogens.


Assuntos
Anti-Infecciosos , Peptídeos , Animais , Peptídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Relação Estrutura-Atividade , Estrutura Molecular , Testes de Sensibilidade Microbiana , Mamíferos
16.
J Comput Chem ; 44(8): 887-901, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: covidwho-2284793

RESUMO

The COVID-19 pandemic has been a public health emergency, with deadly forms constantly emerging around the world, highlighting the dire need for highly effective antiviral therapeutics. Peptide therapeutics show significant potential for this viral disease due to their efficiency, safety, and specificity. Here, two thousand seven hundred eight antibacterial peptides were screened computationally targeting the Main protease (Mpro) of SARS CoV-2. Six top-ranked peptides according to their binding scores, binding pose were investigated by molecular dynamics to explore the interaction and binding behavior of peptide-Mpro complexes. The structural and energetic characteristics of Mpro-DRAMP01760 and Mpro-DRAMP01808 complexes fluctuated less during a 250 ns MD simulation. In addition, three peptides (DRAMP01760, DRAMP01808, and DRAMP01342) bind strongly to Mpro protein, according to the free energy landscape and principal component analysis. Peptide helicity and secondary structure analysis are in agreement with our findings. Interaction analysis of protein-peptide complexes demonstrated that Mpro's residue CYS145, HIS41, PRO168, GLU166, GLN189, ASN142, MET49, and THR26 play significant contributions in peptide-protein attachment. Binding free energy analysis (MM-PBSA) demonstrated the energy profile of interacting residues of Mpro in peptide-Mpro complexes. To summarize, the peptides DRAMP01808 and DRAMP01760 may be highly Mpro specific, resulting disruption in a viral replication and transcription. The results of this research are expected to assist future research toward the development of antiviral peptide-based therapeutics for Covid-19 treatment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Tratamento Farmacológico da COVID-19 , Pandemias , Peptídeos/farmacologia , Antivirais/farmacologia , Peptídeo Hidrolases , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
17.
J Pept Sci ; 29(5): e3467, 2023 May.
Artigo em Inglês | MEDLINE | ID: covidwho-2248936

RESUMO

The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still affecting people worldwide. Despite the good degree of immunological protection achieved through vaccination, there are still severe cases that require effective antivirals. In this sense, two specific pharmaceutical preparations have been marketed already, the RdRp polymerase inhibitor molnupiravir and the main viral protease inhibitor nirmatrelvir (commercialized as Paxlovid, a combination with ritonavir). Nirmatrelvir is a peptidomimetic acting as orally available, covalent, and reversible inhibitor of SARS-CoV-2 main viral protease. The success of this compound has revitalized the search for new peptide and peptidomimetic protease inhibitors. This highlight collects some selected examples among those recently published in the field of SARS-CoV-2.


Assuntos
COVID-19 , Peptidomiméticos , Humanos , Pandemias , Peptidomiméticos/farmacologia , SARS-CoV-2 , Antivirais/farmacologia , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia
18.
J Med Chem ; 65(4): 2809-2819, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: covidwho-2285958

RESUMO

Hexameric structure formation through packing of three C-terminal helices and an N-terminal trimeric coiled-coil core has been proposed as a general mechanism of class I enveloped virus entry. In this process, the C-terminal helical repeat (HR2) region of viral membrane fusion proteins becomes transiently exposed and accessible to N-terminal helical repeat (HR1) trimer-based fusion inhibitors. Herein, we describe a mimetic of the HIV-1 gp41 HR1 trimer, N3G, as a promising therapeutic against HIV-1 infection. Surprisingly, we found that in addition to protection against HIV-1 infection, N3G was also highly effective in inhibiting infection of human ß-coronaviruses, including MERS-CoV, HCoV-OC43, and SARS-CoV-2, possibly by binding the HR2 region in the spike protein of ß-coronaviruses to block their hexameric structure formation. These studies demonstrate the potential utility of anti-HIV-1 HR1 peptides in inhibiting human ß-coronavirus infection. Moreover, this strategy could be extended to the design of broad-spectrum antivirals based on the supercoiling structure of peptides.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Desenho de Fármacos , Proteína gp41 do Envelope de HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Peptídeos/farmacologia , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Infecções por Coronavirus/metabolismo , Relação Dose-Resposta a Droga , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Peptídeos/síntese química , Peptídeos/química , Relação Estrutura-Atividade
19.
J Med Chem ; 65(4): 2747-2784, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: covidwho-2275124

RESUMO

Analysis of the SARS-CoV-2 sequence revealed a multibasic furin cleavage site at the S1/S2 boundary of the spike protein distinguishing this virus from SARS-CoV. Furin, the best-characterized member of the mammalian proprotein convertases, is an ubiquitously expressed single pass type 1 transmembrane protein. Cleavage of SARS-CoV-2 spike protein by furin promotes viral entry into lung cells. While furin knockout is embryonically lethal, its knockout in differentiated somatic cells is not, thus furin provides an exciting therapeutic target for viral pathogens including SARS-CoV-2 and bacterial infections. Several peptide-based and small-molecule inhibitors of furin have been recently reported, and select cocrystal structures have been solved, paving the way for further optimization and selection of clinical candidates. This perspective highlights furin structure, substrates, recent inhibitors, and crystal structures with emphasis on furin's role in SARS-CoV-2 infection, where the current data strongly suggest its inhibition as a promising therapeutic intervention for SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Furina/antagonistas & inibidores , Peptídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Animais , Antivirais/química , COVID-19/metabolismo , Furina/metabolismo , Humanos , Peptídeos/química , SARS-CoV-2/metabolismo , Bibliotecas de Moléculas Pequenas/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19
20.
BMC Pharmacol Toxicol ; 23(1): 91, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: covidwho-2266224

RESUMO

BACKGROUND: The coronavirus disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection became an international pandemic and created a public health crisis. The binding of the viral Spike glycoprotein to the human cell receptor angiotensin-converting enzyme 2 (ACE2) initiates viral infection. The development of efficient treatments to combat coronavirus disease is considered essential. METHODS: An in silico approach was employed to design amino acid peptide inhibitor against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. The designed inhibitor (SARS-CoV-2 PEP 49) consists of amino acids with the α1 helix and the ß4 - ß5 sheets of ACE2. The PEP-FOLD3 web tool was used to create the 3D structures of the peptide amino acids. Analyzing the interaction between ACE2 and the RBD of the Spike protein for three protein data bank entries (6M0J, 7C8D, and 7A95) indicated that the interacting amino acids were contained inside two regions of ACE2: the α1 helical protease domain (PD) and the ß4 - ß5 sheets. RESULTS: Molecular docking analysis of the designed inhibitor demonstrated that SARS-CoV-2 PEP 49 attaches directly to the ACE2 binding site of the Spike protein with a binding affinity greater than the ACE2, implying that the SARS-CoV-2 PEP 49 model may be useful as a potential RBD binding blocker.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Enzima de Conversão de Angiotensina 2 , Antivirais/farmacologia , Simulação de Acoplamento Molecular , SARS-CoV-2 , Peptídeos/farmacologia , Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA